transistor datasheet, cross reference, circuit and application notes in pdf format. TRANSISTOR datasheet, cross reference, circuit and application notes in pdf format. SMALL SIGNAL NPN. TRANSISTOR. DESCRIPTION. The UTC S is a low voltage high current small signal NPN transistor, designed for Class B push-pull.

Author: Kagataur Nekazahn
Country: Antigua & Barbuda
Language: English (Spanish)
Genre: Software
Published (Last): 6 November 2017
Pages: 437
PDF File Size: 16.97 Mb
ePub File Size: 10.79 Mb
ISBN: 721-1-77010-947-7
Downloads: 71884
Price: Free* [*Free Regsitration Required]
Uploader: Shakak

By using our site, you acknowledge that you have read and understand our Cookie PolicyPrivacy Policyand our Terms of Service.

Firstly let me tell you, I don’t have much knowledge about the transistors in circuits. I am having a transistor S Dand it’s connected like on the schematic below. The problem I am tfansistor is when I apply input square wave signal above KHz.

The transistor is not following that fast. In data sheet it says MHz transition frequency.

NPN TRANSISTOR Datasheets, Datasheet(PDF) – DTCT – Unisonic Technologies

Output at kHz of input signal: There are two things going on here, the turnoff speed of the transistor and the rise time at the end of a resistor with parasitic capacitance. BJT’s turn off slowly, especially when coming out of saturation. The circuit driving the base can help with this in two ways. It can avoid driving the transistor into saturation, and it can actively drive the base low, not just leave it floating, to turn off the transistor. Tranaistor way to avoid saturtion is to bias the transistor to near the middle of its operating range, then feed in a signal just strong enough to cause the output to go near, but not actually to, the lower limit.

Another way is a Schottky diode from base to collector. This draws current from the base that would otherwise saturate the transistor when the collector gets too low. To decrease the parasitic capacitance effect, use as low a impedance as you tramsistor willing to spend current for. For example, can you decrease the resistor values by a factor of 10 and then increase the transistor current by a factor of 10 to end up with the same voltage?

If so, try that. Knowing how your circuit was built and the model of your scope probe and its settings become relevant at this sort of capacitance level.


Whether construction is hardwired on eg vero board or on a plug in breadboard, whether you are using “bits of wire” or MHz probes or? It is likely that the circuit itself is swamping all these effects, but they start to come potentially significant at this level.

Did you change them between displayed results? The photos are useful and do a good job of showing us both what is happening AND that you are partially fooling yourself and maybe your viewers by what you show.

When you change from the kHz signal to the kHz signal the waveform occupies 2 divisions in both cases. This means that the rising waveform in the first photo is 5 x slower-rising than is apparent when making visual comparisons. This makes a difference when you are trying to find out what effects are really happening and tranzistor they are occurring. Also, tranzistor looks like you have changed the vertical scale as well, with more sensitivity in the last photo compared to the tansistor so that it looks taller.

But, this difference may be accounted for by your probe calibration. Have you calibrated your oscilloscope probe? If you apply a “perfect” low frequency square wave to your probe, such as is often available on a calibration pin on your oscilloscope’s front panel, does it appear as a perfect square wave, or does it have a rounded leading edge?

If the probe does not let you display a square wave response to a low frequency square wave then it will mask the results at higher frequencies.

Most good or half good probes have an adjustment screw on the side which allows you to connect them to a “known square” waveform source and adjust the screw until a square waveform is applied. While this may seem to be somewhat cheating by MAKING a waveform look square regardless it is a valid operation as long as the waveform is in fact square.

And also – you do not show the driving transjstor at the transistor base, and it matters. You will usually use a drive resistor from a source of maybe 5 volts, and this resistor value can make an immense difference to the result. A substantial improvement in frequency response can often be obtained by adding a “speedup capacitor” trannsistor the drive resistor.

Adding a capacitor of from under pF to maybe 1 nF across in parallel with the drive resistor may make a significant difference.


The first reason for the bad performance you are experiencing is what other’s have already said: You are saturating the transistor. Then other reason is, you are using a very high collector resistor. Read the data sheet of your transistor. You will see a practical test circuit for testing switching performance of the transistor. The higher collector resistor you connect, the worse switching response you will get.

Those fast transistors are indeed fast, but if you give enough collector current to them. If you want to get a fast switching performance, on the other hand you don’t want to waste power on a small collector resistor, I suggest you use totem pole structure or a logic gate instead.

By clicking “Post Your Answer”, you acknowledge that you have read our updated terms of serviceprivacy policy and cookie policyand that your continued use of the website is subject to these policies.

NPN TRANSISTOR Datasheet(PDF) – DTCT – Unisonic Technologies

Home Questions Tags Users Unanswered. Doctorslo 80 1 1 9. But note too that you have “hidden in plain site” several things that need to be known for a really good answer to be possible. See my answer for more details, but note that eg you have changed the oscilloscope settings between readings without telling us, and you show an “input signal” AT the base when in fact it is not a pure “just right” base drive but has characteristics of its own that probably matter, AND we do not know full details of how you measured what we see – and this too matters.

I am not trying to be over critical of an excellent Olin Lathrop k 30 Russell McMahon k 9 Sign up or log in Sign up using Google. Sign up using Facebook. Sign up using Email and Password.

S8050 Datasheet, Equivalent, Cross Reference Search

Post as a guest Name. Email Required, but never shown. Post Your Answer Discard By clicking “Post Your Answer”, you acknowledge that you have read our updated terms of serviceprivacy policy and cookie policyand that your continued use of the website is subject to these policies.